Школьные задачи / Алгебра / А-33

Построить график функции:

$$y = \operatorname{arctg}(\operatorname{tg} x)$$

Решение

Найдём сначала область определения $y(x) = \operatorname{arctg}(\operatorname{tg} x)$. Арктангенс определён при любом действительном значении аргумента, а тангенс не существует при $x = \frac{\pi}{2} + \pi n$ ($n \in \mathbb{Z}$), из чего следует, что y(x) имеет смысл при $x \neq \frac{\pi}{2} + \pi n$.

Тангенс и арктангенс – нечётные функции, поэтому

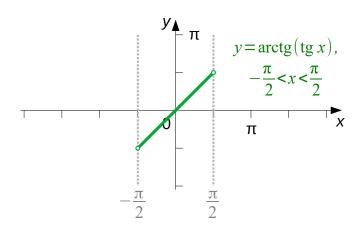
$$arctg(tg(-x)) = arctg(-tgx) = -arctg(tgx)$$

Таким образом, y(x) является нечётной (y(-x) = -y(x)) и её график симметричен относительно начала координат.

Из периодичности тангенса следует, что выполняется равенство

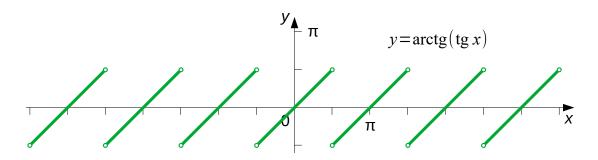
$$arctg(tg(x + \pi n)) = arctg(tgx)(n \in \mathbb{Z}),$$

то есть y(x) также является периодической функцией с периодом $T=\pi$. Это означает, что для построения её графика достаточно построить его на отрезке значений аргумента длиной π , а затем его кратно периоду параллельно перенести вправо и влево вдоль оси абсцисс. С учётом нечётности y(x) удобно выбрать интервал $-\frac{\pi}{2} < x < \frac{\pi}{2}$ — рассмотрим y(x) на нём. Арктангенс по определению — число от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$, тангенс которого равен заданной величине. В y(x) аргументом арктангенса является tg x, а поскольку арктангенс — функция обратная тангенсу, это означает, что на рассматриваемом интервале выражение $\arctan(tg(tg\ x))$ возвращает значение самого x. Иными словами при $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ имеем, что график y(x) полностью совпадает с графиком линейной функции y=x:



Остаётся принять во внимание периодичность y(x) и сделать вывод, что график функции $y = \arctan(tg(tg x))$ представляет собой бесконечную череду линейных фрагментов, наклонённых под углом 45° по отношению к положительному направлению оси абсцисс.

Ответ



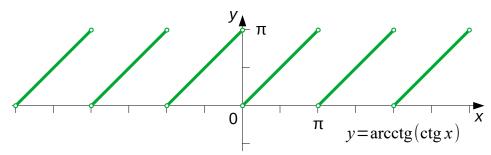
Комментарий

Ход решения рассмотренной выше задачи весьма сходен с разбором упражнения A-32. Чуть более «заковыристым» было построение графика из задачи A-31. В традиционной «тригонометрической четвёрки» функций синус / косинус / тангенс / котангенс неохваченной осталась только последняя в комбинации со своей обратной функцией:

$$y = \arcsin(\sin x)$$

 $y = \arccos(\cos x)$
 $y = \arctan(\tan x)$
 $y = \arctan(\cot x)$

Построение такого графика можно предложить в качестве варианта для самостоятельного решения.



© Широков Александр, 29.06.2024